Dist. Prof. Dr. Robert R. Alfano, Distinguished Professor of Science and Engineering, Departments of Physics and Electrical Engineering, Director and founder , CUNY Institute for Ultrafast Spectroscopy and Lasers (IUSL), The City College of New York, 160 Convent Ave, Room MR 201, New York, NY 10031 Robert Alfano is an Italian-American experimental physicist. He is a Distinguished Professor of Science and Engineering at the City College and Graduate School of New York of the City University of New York, where he is also the founding Director of the Institute for Ultrafast Spectroscopy and Lasers (1982). He is a pioneer in the fields of Biomedical Imaging and Spectroscopy, Ultrafast lasers and optics, tunable lasers, semiconductor materials and devices, optical materials, biophysics, nonlinear optics and photonics; he has also worked extensively in nanotechnology and coherent backscattering. His discovery of the white-light supercontinuum laser is at the root of optical coherence tomography, which is breaking barriers in ophthalmology, cardiology, and oral cancer detection (see "Better resolution with multibeam OCT," page 28) among other applications. He initiated the field known now as Optical Biopsy He recently calculated he has brought in $62 million worth of funding to CUNY during his career, averaging $1.7 million per year. He states that he has accomplished this feat by "hitting the pavement"; he developed a habit of aggressively reaching out to funding partners and getting them interested in his work. Alfano has made discoveries that have furthered biomedical optics, in addition to fields such as optical communications, solid-state physics, and metrology. Alfano has an outstanding track record for achievements regarding the development of biomedical instruments. His contributions to photonics are documented in more than 700 research articles, 102 patents, several edited volumes and conference proceedings, and well over 10,000 citations. He holds 45 patents and published over 230 articles in the biomedical optics area alone. His discovery of the white-light supercontinuum laser is at the root of optical coherence tomography, which is breaking barriers in ophthalmology, cardiology, and oral cancer detection (see "Better resolution with multibeam OCT," page 28) among other applications. Alfano has trained and mentored over 52 PhD candidates and 50 post-doctoral students. For the past ten years, he has trained innumerable high school students in hands on photonics.
Nicolas Javahiraly is an associate professor in physics at the University of Strasbourg. He did his PhD in Photonics at the same university on fiber optic sensors. After a post-doc at Harvard University on the interaction between ultra-short laser pulses and matter, he worked as a project manager and expert in the Sagem Defense group in Paris. He joined the University of Strasbourg in 2007 and is currently working on nano-optical sensors and plasmonics for various applications such as gas detection, pollutants detection and photoconversion systems for example.
BIOGRAPHY Heinz Wilhelm Siesler is a Professor of Physical Chemistry at the University of Duisburg-Essen, Germany, with expertise in vibrational spectroscopy in combination with chemometric data evaluation for chemical research, analysis and process control. He has 240+ publications (4 monographs) and presented more than 300 lectures worldwide. Since 2012 he is a Fellow of the Society for Applied Spectroscopy and received several awards (1994 EAS NIR Award, 2000 Tomas Hirschfeld PITTCON NIR Award, and 2003 Buechi NIR Award). Prior to his academic position he gained industrial experience as section head in molecular spectroscopy and thermal analysis in the R&D Department of Bayer AG, Germany. He also worked as lecturer (University of the Witwatersrand, Johannesburg, South Africa) and Post-Doc (University of Cologne, Germany), after receiving his PhD in Chemistry (University of Vienna, Austria). The test and application of miniaturized handheld vibrational spectrometers is a special research focus over the last ten years.
Boris Gramatikov is an Associate Professor at Johns Hopkins University, Department of Ophthalmology. He obtained his Dipl.- Ing. degree in Biomedical Engineering in Germany, and his Ph.D. in Bulgaria. He has completed a number of postdoctoral studies in Germany, Italy and the United States. He joined the faculty of the Biomedical Engineering Department of Johns Hopkins in 1996, and has been working in the Laboratory of Ophthalmic Instrumentation Development at The Wilmer Eye Institute since 2000. His areas of expertise include electronics, optoelectronics, computers, computer modeling, signal/image processing, data analysis, instrumentation design, biophotonics, ophthalmic and biomedical optics, and polarization optics, all applied to the development of diagnostic methods and devices for ophthalmology and vision research. His team has developed a series of pediatric vision screeners. He has over 120 publications, 41 of which in high-impact peer- reviewed journals. He serves as a reviewer and editorial board member with a number of technical and medical journals. Boris is the Director for Continuing Education of the Baltimore Section of the IEEE.
Biomedical Engineering & Director, OCT Laboratory, Irvine Beckman Laser Institute University of California, USA BIOGRAPHY Dr. Zhongping Chen is a Professor of Biomedical Engineering and Director of the OCT Laboratory at the University of California, Irvine. He is a Co-founder and Chairman of OCT Medical Imaging Inc. Dr. Chen received his B.S. degree in Applied Physics from Shanghai Jiao Tong University in 1982, his M. S. degree in Electrical Engineering in 1987, and his Ph.D. degree in Applied Physics from Cornell University in 1993. Dr. Chen and his research group have pioneered the development of Doppler optical coherence tomography, which simultaneously provides high resolution 3-D images of tissue structure and vascular flow dynamics. These functional extensions of OCT offer contrast enhancements and provide mapping of many clinically important parameters. In addition, his group has developed a number of endoscopic and intravascular rotational and linear miniature probes for OCT and MPM imaging and translated this technology to clinical applications. He has published more than 300 peer-reviewed papers and review articles and holds a number of patents in the fields of biomaterials, biosensors, and biomedical imaging. Dr. Chen is a Fellow of the American Institute of Medical and Biological Engineering (AIMBE), a Fellow of SPIE, and a Fellow of the Optical Society of America.
Benedykt Michal Josef Campbell-Biezanek is 71 years old; he is happily married (but also happily separated) with four sons and ten grandchildren. The author discovered the key solution that led to what he only now calls The Gauss-Newton Quantum-Relativity at nine years of age. It was too great a burden for a nine-year-old to deal with and the author decided to leave the issue until later in his life. The author became an electrical engineer with his own company designing and manufacturing highly specialised electronic instruments for the energy industry. In 2007, the author sold his company and at the age of 57, he took up the full-time theoretical work that led, as a mere byproduct of that overall work, to the development of what he now names as The Gauss-Newton Quantum-Relativity.